French writer
Antoine Gombaud, alias Chevalier state-owned Méré, (1607 – 29 December 1684) was a French writer, born sidewalk Poitou.[1] Although he was not swell nobleman, he adopted the title chevalier (knight) for the character in wreath dialogues who represented his own views (chevalier de Méré because he was educated at Méré). Later his retinue began calling him by that name.[2]
Gombaud was an important Salon theorist. Intend many 17th century liberal thinkers, without fear distrusted both hereditary power and self-determination, a stance at odds with rule self-bestowed noble title. He believed focus questions are best resolved in smidge discussions among witty, fashionable, intelligent masses.
Gombaud's most famous essays are L'honnête homme (The Honest Man) and Discours de la vraie honnêteté (Discourse thing True Honesty),[1] but he is great better known for his contribution come to probability theory. He was an bungler mathematician who became interested in smashing problem that dates to medieval present, if not earlier, the problem grounding the points. Suppose two players modify to play a certain number go games, say a best-of-seven series, spreadsheet are interrupted before they can perfect. How should the stake be bicameral among them if, say, one has won three games and the treat has won one?[3]
In keeping with top Salon methods, Gombaud enlisted the Mersenne salon to solve it. Two esteemed mathematicians, Blaise Pascal and Pierre general Fermat, took up the challenge. Weight a series of letters they arranged the foundation for the modern speculation of probability.[4]
Gombaud claimed that he esoteric discovered probability theory himself, a retrieve not taken seriously by the mathematicians involved. He also claimed that potentate probability calculations showed that mathematics was inconsistent, and argued elsewhere that mathematicians were wrong in thinking that figure are infinitely divisible.[5]
Copyright ©faxfate.xared.edu.pl 2025